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SUMMARY

Large eddy simulation (LES) results are reported for temporally developing solid–solid and solid–rigid-
lid juncture flows. A MacCormack-type scheme that is second-order in time, and fourth-order in space
for the convective terms and second-order in space for the viscous terms, is used. The simulations are
obtained for a low subsonic Mach number. The subgrid-scale stresses (SGS) are modeled using the
dynamic modeling procedure. The turbulent flow field generated on a flat-plate boundary layer is used to
initialize the juncture flow simulations. The results of the flat-plate boundary layer simulations are
validated with experimental and direct numerical simulations (DNS) data. In juncture flow simulations,
the presence of an adjacent solid-wall/rigid-lid boundary altered the mean and the turbulent field, setting
up gradients in the anisotropy of normal Reynolds stresses resulting in the formation of turbulence-in-
duced secondary vortices. The relative size of these secondary vortices and the distribution of mean and
turbulent quantities are in qualitative agreement with the experimental observations for the solid–solid
juncture. The overall distribution of the mean and turbulence quantities showed close resemblance
between the solid–solid and the solid–rigid-lid junctures; except for the absence of a second vortical
region near the rigid-lid boundary. In agreement with the experimental observations, it was found that
the normalized anisotropy term exhibited similarity when plotted against the distance from the boundary,
regardless of the type of boundary, i.e. solid-wall or rigid-lid. The turbulent kinetic energy increased near
the rigid-lid boundary. While the surface normal velocity fluctuations decreased to zero at the rigid-lid
boundary, the other two velocity components showed an increase in their energy, which is also consistent
with the experimental observations. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The flow field in a juncture generated by two interacting boundary layers are common in many
engineering applications, e.g. ducts and wing-body-type configurations. A similar scenario
occurs at the intersection of a solid-wall and a free-surface; where the boundary layer on the
solid-wall interacts with the free-surface boundary layer. Examples include open channel flows
and ship boundary layers. An important feature of turbulent juncture flows is the generation
of Reynolds stress-induced secondary flows of Prandtl’s second kind. Most of the investiga-
tions to date on this subject have been on channel flows, especially closed channel flows, where
the outer flow is fully developed. Relatively very little is known regarding flows where the
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boundary layers are still developing in the region of interest. It appears that the present effort
is the first numerical investigation where different types of developing juncture flows are
studied. Turbulent flow was simulated in junctures formed either by two solid-walls or a
solid-wall and a rigid-lid boundary; the rigid lid being an approximation for the free-surface.

The objectives of this study are: (1) to investigate the influence of solid and rigid-lid
boundaries on developing turbulent boundary layers, (2) to identify the large scale secondary
motions, (3) to evaluate the role of anisotropy of normal Reynolds stresses on the generation
of these secondary flows and (4) to bring out the similarities and differences between the
solid–solid and the solid–rigid-lid junctures. Considering the complexity and magnitude of the
problem, this study is not intended to provide a final set of answers, but rather a first step in
achieving the final goal of understanding the physics aiding the development of prediction tools
for such flows.

For direct numerical simulations (DNS) and large eddy simulations (LES), the prescription
of suitable inflow conditions has always been a challenge. In the present investigation, temporal
simulations are considered where streamwise periodicity is assumed. The initial conditions for
the juncture flow simulations are obtained from a turbulent flat-plate boundary layer simula-
tion. For the subgrid-scale stresses (SGS), the dynamic modeling procedure of Germano et al.
[1] is used.

The numerical scheme used in this study is a second-order predictor–corrector MacCormack-
type compressible scheme that is fourth-order in space for convective terms and second-order
for viscous terms. The simulations are obtained for a low subsonic Mach number (0.4) so that
the compressiblity effects are minimal [2] and the flow is very close to the incompressible limit.

The rigid-lid boundary condition is often used and reported in the literature as a representa-
tion of a free-surface boundary with negligible waves for incompressible flows. The results
indicate that this is a satisfactory approximation for compressible flows for the levels of Mach
numbers considered in this study.

In view of the assumptions and approximations made, it is important that the results are
validated. The boundary layer results are presented and validated for a range of grids using
experimental [3] and DNS [4] data. For developing juncture flows, very little data is available
and the comparisons are more qualitative in nature. The data of Kornilov and Kharitnov [5]
appears to be the only available data in the literature for the developing solid–solid juncture.
For developing solid–free-surface junctures, the data of Longo et al. [3] represent the most
complete in terms of mean flow and Reynolds stress data.

The juncture flow simulations are obtained using the fully turbulent boundary layer as an
initial condition. Spatial and ensemble averaging are performed to obtain the mean quantities.
The results are analyzed to study the influence of the solid and rigid-lid boundaries on the
turbulent boundary layer. The formation of secondary vortices and the role of Reynolds stress
anisotropy are then discussed with the aid of experimental data. The presence of a scaling law
for the anisotropy of the normal Reynolds stresses introduced by Longo et al. is confirmed. The
influence of solid and rigid-lid boundaries on the turbulent kinetic energy is discussed followed
by a discussion on the performance and limitations of the present implementation of the
dynamic subgrid-scale model. Finally, concluding remarks are made.

2. BACKGROUND

The current status of turbulent juncture flow investigations that are relevant to the present
study are reviewed. Since the initial conditions for the juncture flow simulations are obtained
from a flat-plate simulation, a brief review of transitional-turbulent flat-plate boundary layer
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LES and DNS is presented first. This is followed by a discussion and a review of solid–solid
and solid–rigid-lid junctures, and a brief discussion on turbulence–free-surface interactions.

2.1. Turbulent flat-plate boundary layer

Very few investigators (Rai and Moin [4], Rai et al. [6]) have attempted DNS/LES of
spatially developing turbulent flat-plate boundary layer flows. These studies showed the
feasibility of performing spatially developing transitional-turbulent boundary layer flows, even
though computationally very intensive. Other investigators [7–10] have obtained results similar
to a spatially developing flat-plate boundary layer using various approximations to recycle the
exiting turbulence back into the computational domain. Other numerical investigations to date
have used fully periodic boundary conditions in the streamwise direction. Even though such an
assumption is truly justified only for fully developed flows, e.g. channel or duct flows, temporal
simulations are useful in studying spatially developing flows, e.g. mixing layers and flat-plate
boundary layers [11–13]. Like other LES and DNS studies, most of the earlier simulations
were performed using spectral methods; whereas the recent simulations are mainly performed
using finite difference techniques with the order of accuracy ranging from second-order to
fourth- or even higher-orders. Apart from the differences in numerical schemes, the above
mentioned simulations differ from each other with regard to the grid resolutions, subgrid-scale
models in the case of LES studies and the overall quality of the results obtained. While some
of the studies have been able to reproduce the important quantitative features of the flat-plate
boundary layer flows, others obtained on coarser grids were focusing primarily on the
qualitative aspects of the flow field. Since the focus of the present work is on juncture flows,
a detailed evaluation of the relative merits and demerits of each of the above simulations is not
attempted here.

The objectives of the boundary layer simulations reported in this study are to ensure a
credible and satisfactory initial condition for the juncture flow simulations and to serve as a
validation test for the present implementation of the numerical scheme and the assumptions
made.

2.2. Turbulent juncture flows

Turbulent flows in streamwise corners are characterized by the presence of secondary flows
of the second kind which are generally understood to be driven by gradients in Reynolds stress
distributions [14,15]. These secondary flows appear as streamwise vortices at the junction of
two interacting boundary layers. Such vortices are observed experimentally in channel and
duct flows, where boundary layers of the side walls meet the top free-surface/wall or the
bottom wall.

2.2.1. Solid–solid juncture flows. There are quite a few numerical simulations and experimen-
tal investigations of secondary flows in solid–solid corner flows in the literature. Most of the
numerical simulations and experimental measurements are for fully developed channel flows or
straight duct flows. Here, some of the LES work that has been done examining this problem
is reviewed. Miyake and Kajishima [16] performed a LES to study the secondary flow fields in
square straight ducts. Madabhushi and Vanka [17] also performed a similar simulation and
obtained only qualitative comparisons with experimentally measured quantities. The deviations
from the experiments were attributed to the mismatch in Reynolds numbers. Recently, Su and
Friedrich [18] performed a LES of the same problem on a range of grids and obtained excellent
comparisons with experiments for mean and turbulent quantities. The SGS model used in their
study was a modified version of the model developed by Schumann [19].
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While all the previous numerical investigations are for fully developed channel flows,
Kornilov and Kharitonov [5] conducted an experimental investigation of developing solid–
solid juncture flows. They studied the interaction of developing boundary layers of differing
thicknesses and found that the flow structure, especially the formation of secondary vortices,
is to a large extent dependent on the magnitude of the asymmetry parameter (G). Here, G is
defined as the ratio of thicknesses of the interacting boundary layers. Their findings and results
will be revisited several times in this paper in later sections.

2.2.2. Solid–rigid-lid juncture flows. As mentioned earlier, rigid-lid boundary conditions are
often quoted in the literature as a representation of a non-deforming free-surface for
incompressible flows. They are also used in place of inviscid walls (slip walls). For free-surface
flows, the exact boundary treatment demands the satisfaction of the kinematic and dynamic
conditions. Historically, investigators have used different levels of approximations and as-
sumptions for the sake of simplicity. The above mentioned rigid-lid assumption is at the lowest
level of generality, wherein the free-surface is assumed to be fixed and flat. Under this
assumption, the velocity component normal to the free-surface vanishes due to the kinematic
constraint. Zero derivative conditions are applied on the other two velocity components. The
application of a rigid-lid boundary can be seen in [20–22]. At the next level of generality is the
linearized free-surface boundary condition as applied by Mangiavacchi et al. [23] and Komori
et al. [24]. After the linearized free-surface boundary conditions, comes the exact treatment
where the free surface is allowed to deform and all the kinematic and dynamical conditions are
identically satisfied. However, as noted earlier, a rigid-lid type boundary is applied in the
present work.

In numerical investigations to date, where turbulence-driven secondary flows in solid–rigid-
lid junctures are studied, the outer flow is fully developed, e.g. the fully developed open
channel flow [25]. Leighton et al. [26] conducted a DNS of a solid–rigid-lid juncture flow
starting with a fully developed channel flow DNS data as an initial condition. The numerical
and the accompanying experimental investigation [27] indicate the presence of a counter-clock-
wise streamwise oriented vortex in the inner region of the juncture, driving the flow at the
free-surface towards the wall. In the outer region, the flow is up towards the free surface and
out away from the wall which thickens the boundary layer near the free-surface. Apart from
these studies, there are two other experimental studies, namely [3,28]. While the measurements
of Logory et al. [28] are taken in wake of surface-piercing flat-plate, the measurements of
Longo et al. [3] are for both boundary layer and wake. As noted earlier, the data of Longo et
al. represents the most complete in terms of mean flow quantities, Reynolds stresses and a
detailed uncertainty analysis. Longo et al. also observed a counter-clockwise streamwise
oriented vortex near the juncture and an outer region of high streamwise vortcity of the
opposite sense. Their findings will be discussed further in later sections when comparisons are
made with the present numerical investigation. Before concluding the discussion on solid–free-
surface juncture flows, a brief discussion is presented regarding the influence of free-surfaces on
underlying turbulence.

There are quite a few numerical and experimental investigations in the literature on the
effects of a free-surface boundary on turbulence. A few of the recent ones are given in
References [29,30]. One of the commonly observed features is an increase in the turbulent
kinetic energy near the free-surface along with an apparent transfer of energy from the surface
normal velocity component to the other two components, resulting in a quasi-two-dimension-
alization of the turbulence in a layer close to the surface. Previous numerical studies on
free-surface turbulence including open channel flows, submerged jets and the evolution of
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homogeneous turbulence under the influence rigid-lid boundary [21–23,31], have shown
similar results. These studies indicate that the intercomponent transfer and the overall increase
in kinetic energy near the free surface is due to the anisotropic nature of the dissipation tensor
and an overall decrease in dissipation rate near the surface.

3. SOLUTION METHODOLOGY AND COMPUTATIONAL PARAMETERS

A brief introduction to LES is presented along with equations of LES, information on
subgrid-scale modeling and the numerical scheme used in this study. This is followed by
sections on computational details of the presented simulation, e.g. the reference parameters,
computational domain and grid sizes, initial and boundary conditions, and the averaging
techniques to obtain mean quantities.

3.1. Large eddy simulation

The basis of LES is that only small scales that tend to be isotropic and hence more universal
in nature, need be modeled, while the energy carrying large scale eddies are computed. The
resolved large scales in LES are defined with respect to a filter function that filters out the
small scales. Henceforth, this filter will be referred to as the primary filter. Furthermore, the
small scales carry a small portion of the total turbulent energy, and thus one anticipates that
the SGS models are less complex than those required for the Reynolds-averaged (RANS)
equations. The most widely used SGS model is the eddy viscosity model based on the
Smagorinsky formula [32].

3.2. Equations of large eddy simulations

The Navier–Stokes equations are Favre-filtered. Let a tilde (� ) denote a Favre-filtered
quantity and an overbar (− ) denote the space-filtering operation. Following Erlebacher et al.
[33], we introduce the Favre-filtered field,

f0 =rf
r̄

, (1)

and decompose the total flow field into a resolvable field f0 and a subgrid-scale field f %,

f= f0 + f %. (2)

Filtering the mass and momentum equations, we obtain

(r̄

(t
+
((r̄ũj)
(xj

=0 (3)

(r̄ũi

(t
+
(

(xj

[r̄ũiũj+ p̄dij+Rij− t̄ij ]=0, (4)

where

Rij= r̄(uiuj
�

− ũiũj) (5)

is the subgrid-stress tensor and t̄ij is the viscous stress tensor. The filtered pressure is given by

p̄= r̄RT0 , (6)
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where T0 is the resolvable temperature field and R is the gas constant.
Filtering the total energy equation, we obtain

((r̄E0 +k)
(t

+
(

(xj

[(r̄E0 + p̄)ũj+Kj+Qj−uitji+qj ]=0, (7)

where

E0 = ẽ+
1
2

ũiũi, (8)

Qj=Cpr̄(Tuj
�

−T0 ũj), (9)

k=
1
2

(Rii), (10)

Kj=
1
2

r̄(ũiũiũj
�

− ũiũiũj). (11)

More details of the equations can be found in Reference [34].

3.3. Subgrid-scale model

The subgrid-scale eddy viscosity used is this study is the compressible version of the
Smagorinsky formula due to Erlebacher et al. [33]. The model constant is computed using
the dynamic modeling procedure in [1]. Central to this dynamic modeling technique is the
application of a test filter with a larger filter-width than the primary filter. In the present
implementation, the test filtering is performed using a box filter in the physical space. A
key input to the calculation of the model constant is the ratio of the test filter to the
primary filter. This ratio is usually referred to in the literature as a. In the dynamic model
calculations, it is common practice to compute the product CRD2 rather than model con-
stant CR independently, and the only filter parameter that needs to be specified is a. Here
D2 is the width of the primary filter. In the present investigation, the value of a is taken as
2. A complete discussion on the model including the derivation of the model constants and
details of the present implementation of the box filter is provided in [34,35], thus not
repeated here.

An averaging procedure is usually adopted to make the constants well conditioned. These
averages are generally taken along a direction in which the turbulence is assumed to be
homogeneous. Thus, the constants obtained are independent of the directions in which
turbulence is homogeneous. There are some mathematical inconsistencies associated with
treating CR as a constant in the averaging operation. Akselvoll and Moin [36] rectified
these inconsistencies in their dynamic localization technique and found that the inconsisten-
cies due to the averaging process have only minimal effects on the results for the flow
over a backward facing step. The details of the dynamic localization technique is given in
[37]. In addition to overcoming the mathematical inconsistencies inherent in the averaging
procedure, the dynamic localization technique has a major advantage in that it can be
applied to more general flows which may not possess any homogeneous directions. How-
ever, localization modeling is yet to gain widespread usage by the LES research community.
The present implementation of the model also does not make use of the dynamic localiza-
tion technique.
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3.4. Numerical scheme

The numerical scheme used in this study is a modified MacCormack scheme developed by
Gottlieb and Turkel [38]. The scheme is explicit second-order-accurate in time, and fourth-or-
der in space for the convective terms and second-order for the viscous terms. This scheme has
been previously used for temporally developing transitional-turbulent flat-plate boundary layer
flows [12,13]. Sreedhar [34] and Ragab et al. [39] used this scheme for LES of turbulent vortices
and mixing layers. Implementation of the scheme for temporal simulations and code validation
using linear stability analysis results are given in [34,35].

3.5. Computational parameters

The reference length, d, is the quantity 
6x/U0, and the reference velocity, U0, is the free
stream velocity. Here 6 is the kinematic viscosity and x is the co-ordinate along the plate. The
Reynolds number based on d is 600 and those based on initial displacement thickness (d1) and
momentum thickness (d2) are about 1000 and 400 respectively. The Mach number based on the
free stream velocity and speed of sound in the far field is 0.4. At this level, the flow is
sufficiently incompressible without making the equations excessively stiff.

3.5.1. Computational domain and grids. The computational box is of dimensions Lx= (2p/
a)d in the streamwise direction, Ly=40d in the transverse wall-normal direction and Lz=20d

in the spanwise direction. Here a is the wavenumber of the linear stability wave which is
described in the next section.

Boundary layer simulations were performed on a series of grids, shown in Table I.
In all these simulations, mesh size is uniform in the streamwise (X-) and the spanwise (Z-)

directions. It may be noted that the spanwise grid spacing used in this study for all the grids
is very conservative for 2D canonical flat-plate boundary layers. The grid in the transverse
direction is stretched to cluster points inside the boundary layer. While the near-wall mesh
spacing of the finest grids (grids D and E) is sufficient to resolve the wall layer, the near-wall
spacings on the three coarser grids (A, B and C) may not be sufficient to fully resolve the wall
layer accurately. The grids C and D are only mildly stretched in the transverse direction
compared with the other grids, resulting in more points in the logarithmic region. The mild
stretching in the transverse direction and the relatively low spanwise spacings help keep the
aspect ratio of the grid cells in the YZ-plane to be of the order unity. This is especially true
for grid C. While such a feature is unnecessary and not used in practice for 2D canonical
boundary layers, it is desirable in the later part of the present investigation, when the same grid
is used for the juncture flows, at which time an additional solid-wall or rigid-lid is introduced
in the spanwise-normal plane.

Table I. Boundary layer simulations were performed on a series of grids

Grid Points inDz+ Points inPoints inGrid size ymin
+

y+B30 y+\30030By+B300

5 15 13A 37×33×73 6.5 6.8
7 13 13B 49×33×109 4.5 4.5

162674.54.565×49×109C
3.7D 18 31 1697×65×129 1.8

2322202.60.972×65×192E
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3.5.2. Boundary conditions. For the initial flat-plate boundary layer calculations, periodic
conditions are imposed in the X- and Z-directions. No-slip along with zero-gradient conditions
for temperature and density are used on the plate (Y=0). In the far field (Y=Ly),
zero-gradient boundary conditions are used for all the variables.

For the juncture flow simulations, periodicity in the spanwise direction was relaxed, instead
rigid-lid or solid-wall is applied at Z=0. The solid–solid juncture flow was obtained by
applying a no-slip boundary at Z=0 similar to the Y=0 boundary. That is

ũ= 6̃=w̃=0,

along with zero-gradient conditions for density and temperature. In the other case, the
boundary conditions for velocities at Z=0 were chosen to match the rigid-lid approximation
which is

w̃=
(ũ
(z

=
(6̃

(z
=0.

A zero-gradient condition was applied for density. For temperature, two boundary conditions
were tried: a zero-gradient condition and a fixed temperature condition based on the free
stream parameters. An examination of the results obtained showed no significant change in the
results due to the treatment of the temperature boundary condition. The modified boundary at
the far field Z=Lz is treated the same way as the far field boundary in the transverse (Y=Ly)
direction.

The computational domain and the boundary conditions are shown in Figure 1

3.5.3. Initial conditions. For generating the turbulent flow-field on the flat-plate, the initial
field consists of compressible Blasius solutions with superimposed perturbations. Perturbations
consist of 2D linear stability waves and random noise. The streamwise wavenumber (a) of the
disturbance is 0.14. Thus, the initial condition for any generic variable u may be represented
as

u(x, y, z)=a2dua2d(a, x, y)+a3d f(y)R(x, y, z). (12)

Here ua2d is the linear stability eigenwave and a2d is its amplitude. In the present investiga-
tion, the maximum amplitude of the eigenwave is initialized to be 2% of the mean streamwise
velocity. The R(x, y, z) in the above expression represents a random number generated by the
computer in the range −1 to +1. The function f is chosen such that it assumes low values
very near the plate and outside the boundary layer in the free stream. The magnitude of the
3D disturbance, a3d, is taken to be B1% of the mean streamwise velocity.

Forcing functions [12,13] are added to the right-hand side of the x-momentum and the
energy equation to prevent the mean flow profile from degenerating into an error function
profile.

The turbulent flow-field generated on a flat-plate is used as an initial condition to study the
juncture flow. The procedure of modifying the boundary conditions after an initial flow-field
has been generated has been previously adopted [26,31,40]. Biringen and Reynolds [40] and
Walker et al. [31] used a homogeneous turbulent flow-field as their initial condition and then
applied a no slip and a shear-free boundary condition on two boundaries to study the
characteristics of shear-free turbulent boundary layers using LES. Leighton et al. [26] obtained
fully developed channel flow simulation data and then modified the boundary conditions to
study the turbulent flow-field in a corner configuration. A similar technique is followed in the
present investigation where the turbulent boundary layer simulation data serves as the initial
condition for the juncture flow simulations with modified boundary conditions.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 47–72 (1998)
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Figure 1. Computational domain and boundary conditions.

3.5.4. Mean flow quantities. Mean flow quantities were obtained for the boundary layer
calculations by spatial averaging in the two homogeneous periodic directions. For the juncture
flows, the spanwise direction is no longer homogeneous, which means one less direction for
averaging. For improving the statistical quantities, one could either perform a time averaging
or an ensemble averaging. For statistically steady flows such as a fully developed channel flow,
the mean quantities from a temporal simulation are usually obtained by averaging in time.
However, for developing flow-fields like the ones considered in this study, such an averaging
would be unjustified for temporal simulations. Instead, an ensemble averaging was performed.
Simulations were repeated on a single grid starting with different initial levels of perturbations.
While the maximum amplitude of the linear stability wave was kept at 2% of the mean flow,
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the root mean square values of the random fluctuations were varied from 1% to 1/10% of the
mean flow from one simulation to another. Also the distribution [ f(y) in Equation (12)] of the
random noise in the domain was varied from one simulation to another.

4. RESULTS

Results are presented for the turbulent boundary layer calculations and validated by compari-
sons with experimental and DNS data. The juncture flow simulations are presented next, with
results evaluated with respect to experimental data. The issues discussed include the formation
of secondary vortices, the role of the anisotropy of normal Reynolds stresses and the
significance of the asymmetry parameter on the generation of the vortices.

4.1. Turbulent boundary layer

Some representative results of the transitional boundary layer are presented first, followed
by the results of the fully turbulent boundary layer. The fully turbulent boundary layer results
are validated with regards to mean velocity and Reynolds stresses.

Starting from the initial laminar profile, the disturbances were allowed to grow in time.
Transition to turbulence begins at a non-dimensional time of about 750 as seen in Figure 2,
which shows the evolution of displacement thickness (d1), the shape factor (H) and skin
friction coefficient (Cf). These curves are shown for grid C. Here H is the defined as the ratio
of the displacement thickness to the momentum thickness (d2). The shape factor has an initial
value of 2.6, which is the laminar value for incompressible flow. During the transition period
it drops to 1.45, which is very close to the value for incompressible turbulent flow. Once the
flow is fully turbulent, it stays very close to the turbulent value. The displacement thickness
also shows a higher growth rate after the beginning of transition. The sharp jump in the skin

Figure 2. Evolution of displacement thickness, shape factor and skin friction for the boundary layer.
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Figure 3. Mean streamwise velocity profile, experimental data ([3], Reu=1160) and DNS ([4], Reu=1350). Computa-
tions are at Reu=1150.

friction coefficient (Cf) within a short period of time is typical of the transition process. Here
Cf is defined as 2twall/rU0

2 where twall is the friction at the wall. Later, the skin friction settles
down to a lower value of about 3.98. Comparisons with experiments are made when the
Reynolds number, based on the momentum thickness, is about 1150; at which point the
non-dimensional time is about 1250. The corresponding experimentally measured values at this
Reynolds number for a flat-plate boundary layer are: H=1.48 and Cf=4.00. Even on the
coarsest grid (grid A) with the wall layer not resolved, qualitative features such as the sudden
jump in the skin friction and the reduction in the shape factor were observable. However, the
results obtained on the coarser grids did not compare well with the experimental and DNS
data with regard to mean velocity and stresses. Hence, the following validation is shown only
for the three finer grids.

The mean streamwise velocity is shown first. The U+ is plotted against the y+ coordinates.
Figure 3 shows the computed profile along with the experimentally measured and DNS
profiles. The curves corresponding to grids D and E are almost identical with a well discernible
logarithmic region. In the outer region, however, there are differences. This is due to the
different stretching functions used in grids D and E for the same number of points in the
transverse direction. Even though grid C shows differences in comparison with the two finer
grids, it generally follows the correct trend.

Figure 4 shows the comparison of turbulent intensities with the experimental and DNS data.
All the turbulence intensities are scaled with the friction velocity (ut=
twall/rU0

2). The root
mean square quantities are in satisfactory agreement with the experimental and DNS data. The
grid E results are closer to the DNS data, especially for the streamwise component. The peak
value is underpredicted by grids C and D, especially for the streamwise and spanwise
components. In spite of these differences, the results obtained on grids C and D show the
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correct trends. The difference between DNS and the present simulations are greatest for values
of y+\500. Rai and Moin attributes the high edge values of turbulence intensities in their
simulation to the free-stream turbulence levels.

From the results presented, it is clear that a temporally developing LES is capable of
capturing most of the pertinent features of the transitional-turbulent flat-plate boundary layer
flow. The satisfactory comparison with the experimental and DNS data on different grids is a
validation of the present implementation of the numerical scheme.

Figure 4. Normal Reynolds stresses, experimental data ([3]; Reu=1160) and DNS ([4], Reu=1350). Computations are
at Reu=1150.
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4.2. Juncture flow simulations

As described earlier, the juncture flow simulations are initialized with the boundary layer
simulation results but with modified boundary conditions at Z=0. The averaging for
statistical quantities were performed in the streamwise direction along with an ensemble
averaging over different realizations. Grid C was selected for this purpose. The justifications
for selecting grid C are

(1) Satisfactory turbulent boundary layer results were obtained on grid C, including the
normal Reynolds stresses, which play a crucial role in the generation of turbulence-induced
secondary flows.

(2) On grid C, the stretching in the Y-direction is very mild and all the grid cells in the
juncture region have aspect ratios close to unity. This is a very desirable feature for the
juncture flow where weak secondary flows are generated.

(3) Computational requirements for the finer grids, especially in view of the additional runs
required for ensemble averaging for the juncture flows, are extremely high.

To facilitate ensemble averaging, four simulations were performed on grid C, varying the
distribution of the initial perturbation as described in an earlier section. These different initial
conditions did not show any significant effect on the time of onset of transition. The
streamwise-averaged mean flow quantities also showed no significant deviations from each
other even though the instantaneous flow structures showed variations. While an ensemble of
four is a small sample size, it should be recalled that this is in addition to the averaging done
in the homogeneous streamwise direction. Thus the averaged quantities obtained are functions
of Y and Z for the juncture flow; as opposed to functions of Y only for the 2D canonical
boundary layer. As a further check, one realization of the juncture flow simulations was
performed on each of the grids B and D to see the dependence of the results on the grid. The
mean flow structures obtained by spatial averaging alone in the streamwise direction were
found to be rough in comparison with the ensemble averaged ones.

The simulation with the modified boundary conditions was started at a non-dimensional
time of about T=1300 and continued until T=1675. As a final case, we continued the
simulation, leaving the spanwise periodic boundary conditions untouched, which is essentially
a pure temporally developing boundary layer flow, for the same time interval as the other two
cases.

In the following, responses of the turbulent flow-field to these different boundary conditions
and how each of these boundary conditions affected large-scale flow patterns in the corner
region, are discussed.

4.3. Comparison of the flow-fields

In this section, we compare the pure boundary layer (PBL), the solid–solid corner (SSC) and
the solid–rigid-lid corner (SRL). The contours of the mean streamwise velocity in the
YZ-plane are shown in Figure 5. No significant variation in the spanwise direction is seen for
the PBL; whereas for the SSC and SRL, the effect of the modified boundary at Z=0 is
obvious. For the SSC, a thin boundary layer is seen developing on the Z=0 wall in
comparison with the Y=0 wall. For the SRL, the boundary layer near the rigid-lid boundary
has thickened compared with the Z=Lz boundary. Similar behavior is reported by Longo et
al.

Contours of the cross-plane (Y-Z) components of mean velocity (not shown here) also
showed a clear influence of the no-slip and the rigid-lid boundaries on the flow-field. The
transverse velocity has high positive values near the rigid-lid boundary in the outer part of the

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 47–72 (1998)



M. SREEDHAR AND F. STERN60

Figure 5. Contours of mean streamwise velocity (U) in the YZ-plane for the three cases. From top, PBL,
solid–rigid-lid juncture and solid–solid juncture.
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Figure 6. Streamtraces in the YZ-plane for the three cases. From left to right, PBL, solid–rigid-lid juncture and
solid–solid juncture.

boundary layer which causes the boundary layer to thicken. However, very close to the
juncture, contours indicate that the flow at the rigid-lid boundary are directed towards the
wall. A similar finding is reported in Reference [26] near a SRL in their DNS study of a fully
developed juncture flow. More comparisons and details of the above DNS study are given in
next section.

The overall behavior of mean velocity components in the cross-plane are similar for SSC
and SRL, except for the differences in the vicinity of the juncture and the regions very close
to the Z=0 boundary where no-slip conditions are applied for SSC. This can be more clearly
seen from the streamlines in the cross-plane which are shown and discussed in the next section.

4.3.1. Secondary corner 6ortices. To investigate the formation of turbulence-driven secondary
vortices in the streamwise corner, the mean velocity vectors in the Y-Z plane were looked at.
Shown in Figure 6 are streamlines obtained from the mean velocity vectors in the cross plane.
While many random structures can be seen for the PBL, a counter-clockwise vortex in the
corner can be seen for the SSC and SRL. These large vortices appear to be the most
dominating feature of the two corner flows under consideration. An additional smaller vortex
is present near the Z=0 boundary for the SSC. Typically, the turbulent flow-field in a
flat-plate boundary layer contains streamwise-oriented vortices close to the wall. Since the
streamwise extent of these vortices can be sufficiently large, averaging in streamwise direction
alone does not necessarily remove these vortices. However, averaging over a large number of
ensembles should weaken or average out these vortices. The persistence and the apparent
strengthening of the corner vortices, even after ensemble averaging, is an indication that these
vortices are truly due to the influence of the boundary conditions at Z=0 rather than a
randomly generated vortex in a turbulent flow. Similar corner vortices were obtained in the
simulation obtained using grids B and D, showing that these results are grid independent.
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The relative size and location of the two vortices in the SSC are in qualitative agreement
with the experimental observations of Kornilov and Kharitonov [5]. Due to the unavailability
of detailed data from their experimental measurements, the size of these vortices are roughly
estimated (from Figure 4 in Reference [5]) to be about a third of the boundary layer thickness.
Unlike the SSC, only one vortex is seen near the rigid-lid boundary in SRL. This is in contrast
to the data of Longo et al., where two distinct regions of vortical motions of the opposite sense
were observed: a counter-clockwise vortex motion in the inner part and a region of opposite
sign vorticity in the outer part of boundary layer. The DNS results of Leighton et al. also
indicated only one counter-clockwise vortex in the juncture region in the solid–rigid-lid corner
flow. However, it should be noted that the computational domain and set up of the DNS of
Leighton et al. does not exactly correspond to the present LES or the experiments of Longo
et al. Their initial conditions were obtained from a fully developed channel flow and the extent
of their domain in the wall normal direction was only up to y+ of about 300.

In order to explain and understand the absence of the outer vortical region, the governing
equation for the mean streamwise vorticity will be looked at.

4.3.2. Mean streamwise 6orticity and anisotropy of normal stresses. The genesis of the
turbulence-driven secondary vortices is generally understood to be due to the anisotropy of the
turbulence and to the gradients in the normal turbulent stresses. The equation governing the
evolution of mean streamwise vorticity, j, for incompressible turbulent flows is given below.
The entire equation is given for the sake of completeness.�
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Based on experimental and theoretical observations, it has been previously argued by many
investigators that the second last term on the right-hand side which contains (6%6%−w %w %), is
primarily responsible for the generation of these vortices for fully developed flows (see [14]).
Whereas the last term which contains the 6%w % is known to have a damping effect; the term
(6%6%−w %w %) is a measure of the anisotropy of the normal Reynolds stresses in the YZ-plane.
In Figure 7 the contours of the anisotropy term (6%6%−w %w %) in the YZ-plane are shown . For
the PBL, the contour levels are all negative which is a key feature of near-wall flows where the
spanwise component of the velocity fluctuations are larger than the transverse (wall normal)
velocity fluctuations. This is also true for free-surface flows where the surface normal
component of velocity fluctuations are suppressed. In a juncture configuration, two such
regions of opposite signs merge; this gives rise to gradients in the anisotropy term. This is clear
from the distribution of the anisotropy terms in the SSC and SRL that show high positive
values near the Z=0 boundary and predominantly negative values near the Y=0 boundary.
While the high positive values are concentrated in a much thinner region inside the boundary
layer on the Z=0 boundary, the negative values are spread out over the thicker boundary
layer region on the Y=0 boundary. The extreme values, which are predominantly near the
boundaries, drop to near-zero values away from the boundaries as the two regions merge. The
zero contour line can then be defined as a line that divides the corner into two with the higher
angle on the thicker boundary layer side.
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Figure 7. Contours of the mean anisotropy term (6%6%−w %w %) for the three cases. From top, PBL, solid–rigid-lid
juncture and solid–solid juncture.
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In Figure 8 the variation of the anisotropy term (6%6%−w %w %) is shown along the Y- and
Z-direction at various Z and Y locations, respectively. In this figure, the distances are
normalized by the distance from the axes to the zero contour line while the anisotropy term is
normalized by the maximum value along each such line. Also shown in Figure 8 are the data
points from Longo et al. and sketches of the approximate locations of the zero contour lines.
The results obtained for the SRL display satisfactory qualitative comparisons with the
experiments as far as the general shape of the curve is concerned, even though the zero contour
lines are off. The variation of (6%6%−w %w %) over the YZ-plane shows similarity. Apart from the
solid–free-surface juncture data of Longo et al., the wake flow data in [3], and the open and
closed channel flow data in [41] also display the same similarity within the scatter of the data.
The behavior of the 2D boundary layer flow also shows similar behavior. This means that the
nature of the term (6%6%−w %w %) is such that it depends only on the proximity to the boundary,
whether it is a wall (plate) or a free-surface. It may be noted from Figure 8 that the present
LES results also showed significant scatter which could be due to the lack of larger sample
sizes. Longo et al. obtained a curve fit through the similarity curve of the anisotropy term and
then reconstructed the second last term in the vorticity equation. It was found that the sign of
that term is similar to the sign of the streamwise vorticity (j) with blending regions of opposite
signs near the zero contour line.

The close resemblance of the pattern of distribution of (6%6%−w %w %) between the SSC and
SRL points to the argument that it is the same underlying mechanism that is causing the
generation of secondary vortices in the two flow-fields. The only notable difference is the
relative size of the regions where the anisotropy term is positive. The relatively larger region
for the SSC is due to the thicker boundary layer generated near the Z=0 wall due to the
no-slip condition. For a perfectly symmetric corner, where the two boundary layers are of the
same thickness (i.e. a corner flow in which the asymmetry parameter G is exactly one), we
expect the positive and negative values to be symmetrically distributed on either side of the
bisector of the corner. This argument can be extended by noting that any increase in G will
lead to a shrinkage of the positive region near the Z=0 boundary until it reaches the limiting
case of the PBL where G is infinity.

4.3.3. Significance of asymmetry parameter (G). The asymmetry parameter (G) is easily
computable for solid–solid junctures due to the well defined nature of the boundary layers on
no-slip walls. In the present simulation, G is estimated to be about 4 towards the end of the
simulation for SSC, where G is taken as the ratio of the boundary layer thickness on the Y=0
boundary to that of the Z=0 boundary. Following the arguments of the previous section, G
can also be estimated based on the ratio of the area of the regions where the anisotropy terms
are of opposite signs. A similar estimation of G yielded a value of about 8 for the SRL and a
value of around 2 for solid–free-surface juncture data of Longo et al. These values are
tabulated in Table II.

Table II.

GType of junctureInvestigation

Present (SSC) Solid–solid 4
1–2.3Solid–solidKornilov et al.

Present (SRL) Solid–rigid-lid 8
Longo et al. 2Solid–free-surface
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With this information in the backdrop, we come back to take a second look at the secondary
flows in the YZ-plane. The smallness of the second vortex for the SSC in the thinner boundary
layer region of the corner is attributed to the relatively larger asymmetry parameter. The basis
of this conclusion is the experimental findings in [5] which showed that a larger asymmetry
parameter resulted in a smaller and much weaker second vortex. Unfortunately, there is not
enough data to quantify the relationship between the asymmetry parameter and the relative
sizes of the vortices. In their measurements, the largest G they considered was 2.3, at which
level the vortex in the thinner boundary layer was small. In the present investigation, with G
for SSC estimated to be around 4, the second vortex is as small as expected. The sign of these
vortices are consistent with the findings of Kornilov and Kharitnov.

Extending the above argument for the SRL, the absence of the second vortex may be
attributed to the even larger G of around eight at which level the second vortex should be
extremely small. It should be recalled that the data of Longo et al. with G about 2, did show
a region of very high vorticity near the free-surface, apart from the inner counter-clockwise
vortex closer to the solid-wall.

Regarding the size of the vortices, Longo et al. estimates the size of the vortical regions to
about 0.5d0

2 where d0 is the boundary layer thickness. However, the size of the vortex in the
SRL in the present investigation is about 0.1d0

2.
While the overall prediction of the juncture flow was satisfactory for SSC, the same could

not be said about the SRL. This could be due to the inability of the rigid-lid boundary to
mimic the true free-surface boundary. Another factor can be the presence of compressibility
effects. Moreover, it should be kept in mind that only the boundary conditions are changed in
the present study, whereas the governing equations are left untouched. For incompressible
free-surface flows, the Froude number appears only in the boundary conditions, where as for
compressible flows, the Froude number appears in the momentum and energy equations. These
were neglected in the present study. However, the turbulent kinetic energy and individual
velocity components showed the correct free-surface limiting behavior near the rigid-lid
boundary. This is discussed in the next section.

4.3.4. Turbulent kinetic energy. The effect of these modified boundaries on the turbulent
kinetic energy (q) distribution is shown in Figure 9. The kinetic energy increases as the Z=0
boundary is approached for the SRL, while it increases and then decreases for the SSC due to
presence of the no-slip wall. The variation of the normal stresses and turbulent kinetic energy
along the Z-axis at two different Y-locations are shown in Figure 10. For the SSC, the normal
stresses and kinetic energy drops to zero near the noslip wall at Z=0. The behavior of the
kinetic energy and the normal stresses near the Z=0 wall are typical of a flat-plate boundary
layer. For the SRL, near the rigid-lid boundary, where only the w component of the velocity
is made to vanish at the boundary, other two components increase. The departure from the
isotropy near the Z=0 boundary is very clearly demonstrated by the curves at Y=0.9d. Away
from the Z=0 boundary, the normal stresses are isotropic and as they approach the
boundary, they branch out. This behavior is in agreement with the previous findings that there
is a redistribution of energy from the surface normal velocity component to the other two
components near the free-surface. Walker et al. [31] attributes the sustenance of the resulting
anisotropy in normal Reynolds stresses near a rigid-lid boundary to the reduced dissipation of
the tangential velocity fluctuations. It is clear from Figure 10 that the increases in streamwise
velocity fluctuations are larger than the spanwise velocity fluctuations. Longo et al. also
reports the same trend. This is in contrast to the behavior in open channel flows [22] where the
increases in spanwise fluctuations are larger than the increases in streamwise fluctuations near
the free-surface.
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Figure 9. Contours of the turbulent kinetic energy for the three cases. From top, PBL, solid–rigid-lid juncture and
solid–solid juncture.
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Figure 10. Variation of the turbulent kinetic energy for the solid–rigid-lid and the solid–solid juncture along the
Z-axis at different Y locations.
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4.3.5. Dynamic model. Recall that for computing the dynamic model coefficients, a box filter
in physical space was used. For the initial part of the simulation, when periodic boundaries
were applied in the spanwise as well as the streamwise directions, the model constants were
averaged and held constant in the streamwise-spanwise plane. Thus the model coefficient was
obtained as a function of time and the transverse direction. For the later part of the
simulation, when the spanwise periodicity was relaxed, the model coefficient was averaged only
in the streamwise direction, thus allowing it to vary in the spanwise direction in addition to the
transverse direction and time. Figure 11 shows a representative distribution of the product of
the model coefficient and the filter towards the end of the simulation. For the PBL, low values
can be seen near the Y=0 wall boundary and also away in the far-field. In the case of SSC,
the coefficient attains low values near the Y=0 and Z=0 boundaries which are both
solid-walls. The distributions for the SRL and the SSC differ near the Z=0 boundary. The
high values of model coefficient near the Z=0 boundary for SRL is due to the increase in the
turbulent kinetic energy near the rigid-lid boundary.

It may be noted that in the present investigation, the mechanism for backscatter was not
included and that is an area that needs attention, especially for solid–rigid-lid juncture flows.
The reverse cascade of energy from small scales to large scales is important near the
free-surface. Recently, Salvetti et al. [42] investigated this issue and developed a two parameter
dynamic SGS model that combines the features of energy dissipation and backscatter to study
decaying free-surface turbulence in open channel flows and obtained excellent comparisons
with DNS.

5. CONCLUDING REMARKS

Results are reported of a LES performed to obtain a transitional-turbulent flow-field on a
flat-plate boundary layer, and to study the turbulent flow in solid–solid and solid–rigid-lid
junctures. Notwithstanding the approximations made, results indicate that temporal LES is
capable of reproducing many of the experimentally observed features of the flow-fields studied.
The results of the flat-plate simulation showed satisfactory agreement with the experimental
measurements for the mean as well as for the turbulent quantities.

The turbulent flow-field generated on the flat-plate was then used to study turbulence in
SSCs and SRLs by modifying the spanwise boundaries. The presence of the adjacent
solid-wall/rigid-lid boundary significantly altered the mean and turbulent quantities, which in
turn led to the formation of corner vortices driven by the gradients in Reynolds stresses. The
relative sizes of the vortices and the general distribution of the anisotropy stress terms are in
qualitative agreement with the available experimental data for the solid–solid juncture flow.
The distribution of the mean quantities and the anisotropy terms showed remarkable similarity
between the two juncture flow-fields. The main difference, however, was the absence of a
second region of high vortical motion in the solid–rigid-lid corner. The significance of the
asymmetry parameter in the formation of secondary vortices in juncture flows are discussed.
Consistent with the experimental findings, the normalized anisotropy term exhibited similarity
when plotted against the distance from the boundary, regardless of the type of boundary:
solid-wall or rigid-lid. Moreover, the kinetic energy showed an increase as the rigid-lid
boundary is approached, along with a redistribution of energy from the surface normal
components to the other two components which is in agreement with the experimental
observations of free-surface flows.
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Figure 11. Contours of dynamic model constant in the YZ-plane, CRD2.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 47–72 (1998)



LARGE EDDY SIMULATION 71

The main limitations of the present work are the assumptions of temporal evolution of the
flow-field, rigid-lid approximation for free-surface and the possible presence of compressibility
effects. Temporal simulation of developing flows precluded sampling in time which severely
limited the sample size. The presence of compressibility poses difficulties, especially when
trying to approximate the free-surface with a rigid-lid boundary. The discrepancy with the
data, such as the absence of a second vortical region and the differences in area of the vortical
regions, could be due to these factors. Obviously further investigation is required to resolve
these issues. For the solid–solid juncture there is no such ambiguity with the boundary
conditions. However, even for the rigid-lid boundary, the behavior of kinetic energy and other
quantities was very similar to those reported with fully incompressible simulations

Considering the complexity of the problem and the assumptions made, the overall results are
significant and useful. For progress in this area, future work should involve the simulation of
spatially developing flow with incompressible codes and more exact free-surface boundary
conditions. Spatially developing flows allows sampling in time and hence a larger sample size
is available for computing statistical correlations. While a fully deforming free-surface capabil-
ity may not be feasible for LES/DNS studies in the near future, linearized free-surface
boundary conditions can be easily implemented. There is also a need to adapt the two
parameter dynamic subgrid-scale modeling procedure to account for the free-surface turbu-
lence. Such simulations along with detailed experimental data are required to fully understand
the physics of juncture flows, and are essential in the development of RANS turbulence
models.
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